Persija Jakarta meraihkan kemenangan gemilang 3-0, saat menjamu Persib Bandung di lanjutan Liga Super Indonesia Sabtu (30/10). Seluruh gol kemenangan itu tercipta dari trio penyerang Macan Kemayoran Aliyudin, Greg Nwokolo, dan Bambang Pamungkas. Nwokolo menjadi penembus gawang Persib Bandung di menit 52, dilanjutkan oleh Aliyudin di menit 65, dan Bambang di menit ke-77.
Pelatih Persija Jakarta Rahmad Darmawan menilai anak-anak asuhnya bisa menjalankan strategi yang direncanakannya untuk meraup kemenangan pada laga yang dipimpin oleh wasit Jumadi Effendi itu. "Hari ini mereka bermain sama bagusnya di dua babak, namun banyak peluang yang terbuang di babak pertama," kata Rahmad dalam konferensi pers seusai pertandingan. Tim yang dijuluki Macan Kemayoran itu mengawali permainan dengan penuh percaya diri melalui berbagai serangan untuk mengobrak-abrik pertahanan Persib Bandung.
Tim Maung Bandung yang dikapteni oleh Maman Abdurahman memang menunjukkan pertahanan yang luar biasa sebelum turun minum. Maman dan rekan-rekan sukes menahan imbang imbang 0-0 di babak pertama. Pertahanan kuat ini sampai-sampai harus merelakan setiap kesempatan untuk membobol gawang Hendro Kartiko. Pemain tengah dan belakang Persib terlalu berkonsentrasi menjaga dua striker Persija, Bambang Pamungkas dan Greg Nwokolo.
Penyerang Persib Bandung, Christian Gonzales, juga sempat mendapatkan peluang untuk membobol gawang Macan Kemayoran. Peluang ini pertama kali datang pada menit pertama, namun termentahkan begitu saja. Beberapa peluang lainnya sempat datang namun, Gonzales justru harus terkena jebakan offside. Bahkan pada menit ke-19, gol yang diciptakan pemain asing yang menjadi WNI itu dianulir wasit karena offside. Peluang itu datang lagi pada 10 menit menjelang turun minum, tetapi lagi-lagi Gonzales harus terjebak offside.
Di awal babak kedua pun, lagi-lagi Gonzales - yang akan resmi menjadi Warga Negara Indonesia November nanti - terkena jebakan offside. Permainan Persib seperti semakin berantakan setelah Greg Nwokolo sukses membobol gawang Markus Haris Maulana di menit ke-52. Pelatih Persib Bandung Jovo Cuckovic mengakui kelengahan anak-anak asuhnya di babak kedua. "Mereka menjadi seperti bermain sendiri-sendiri, tidak bisa bermain cepat, tidak ada komunikasi," katanya.
Laga sebenarnya sempat memanas di babak kedua. Serangan Persija dari hasil kerja sama Oktavianus dan Bambang Pamungkas di menit 58 bisa dimentahkan oleh Markus dan langsung dibalas pemain tengah Persib Siswanto untuk menembus pertahanan Persija.
Pada menit ke-64 Syamsul Haerudin menendang dari tepi kotak penalti setelah mendapatkan umpan dari oliver Makor, namun tidak bisa mengeksekusi dengan baik. Untungnya, hanya semenit berselang Persija langsung meninggalkan Persib 2-0 berkat gol dari Aliyudin. Semenjak itu, Persib seperti kehilangan konsentrasi permainannya dan tak mampu lagi memberikan pertahanan seketat sebelumnya.
Kapten tim Persija Jakarta, Bambang Pamungkas kemudian membawa selisih gol semakin besar setelah menerima umpan dari Nwokolo di menit ke-77 melewati Nova Arianto dan Maman Abdurachman untuk menembus sudut kiri gawang Markus. Sebetulnya, ada tiga kesempatan lain yang bisa dimanfaatkan BP untuk menjebol gawang Persib. Namun, konsentrasi lini pertahanan Persib yang terkonsentrasi padanya cukup menyulitkan. "Ini memang cukup menguntungkan kami ditambah dengan kemampuan Aliyudin dan Greg (Nwokolo) untuk memanfaatkan kesempatan dengan baik tadi," ujar Rahmad.
Di mata Bambang Pamungkas, mencetak gol sebanyak mungkin bukan lagi menjadi tujuan utamanya. "Saya hanya ingin membawa tim yang membesarkan nama saya ini bisa kembali merebut gelar juara," katanya. Secara khusus, Bambang Pamungkas menjadikan kemenangan ini sebagai hadiah ulang tahun untuk anaknya Syaura Abana yang hari Sabtu (30/10) ini tepat bertambah usia menjadi empat tahun.
Sementaram permainan yang cukup keras ditunjukkan pada laga ini. Empat kartu kuning dikeluarkan wasit Jumadi, dua untuk PErsib dan dua untuk Persija. Nova Arianto dan gelandang Persib Hariono sama-sama diganjar kartu kuning pada babak pertama. Sementara, kartu kuning untuk Persija didapatkan oleh Syamsul Haerudin dan Precious.
blog ini berisi hal-hal seputar apa ja yg pernah gue alami terutama sepakbola..
Sabtu, 30 Oktober 2010
Jumat, 22 Oktober 2010
Robot Line Follower
Robot Line Follower


Line follower robot merupakan robot yang dibuat untuk mengikuti garis hitam. Robot ini menggunakan dua buah motor dc dan mempunyai empat buah sensor infra merah untuk mendeteksi pita hitam. Ketika sensor mendeteksi pita hitam, output dari komparator menjadi low logic sedangkan yang lainnya menjadi high logic. Mikrokontroler AT89C51 dan L293D digunakan untuk mengendalikan arah dan gerakan dari motor. Robot mengubah haluannya dengan cara menghidupkan dan mematikan motornya secara bergantian sampai robot kemabali di garis hitam.
Dalam pembuatan robot ini ditemui masalah pada blok sensor dan Hbridge driver motor. Pada blok sensor, kesalahan terdapat pada pemasangan photodioda, sedangkan pada blok H-bridge driver motor kesalahan terdapat pada motor dc. Pada blok H-bridge ini perlu dilakukan penggantian motor berulang kali untuk mencari motor yang sesuai dengan L293D.Line follower robot dapat mengikuti garis dengan baik pada sudut tumpul. Pada garis dengan sudut lancip robot tidak dapat mengikuti, kecuali sudut 90 derajat. Robot terkadang dapat mengikuti garis, tergantung dari posisi robot pada saat mendeteksi tikungan.
IC (Integrated Circuit)
IC (Integrated Circuit)
| |
IC (Integrated Circuit) merupakan suatu komponen semikonduktor yang di dalamnya terdapat puluhan, ratusan atau ribuan, bahkan lebih komponen dasar elektronik yang terdiri dari sejumlah komponen resistor, transistor, diode, dan komponen semikonduktor lainnya. Komponen dalam IC tersebut membentuk suatu rangkaian yang terintegrasi menjadi sebuah rangkaian berbentuk chip kecil. ![]() Gambar 1. IC ( Integrated Circuit ) IC digunakan untuk beberapa keperluan pembuatan peralatan elektronik agar mudah dirangkai menjadi peralatan yang berukuran relatif kecil. Sebelum adanya IC, hampir seluruh peralatan elektronik dibuat dari satuan-satuan komponen (individual) yang dihubungkan satu sama lainnya menggunakan kawat atau kabel, sehingga tampak mempunyai ukuran besar serta tidak praktis. Ditinjau dari segi bahan baku, IC dibalut dalam kemasan (packages) tertentu agar dapat terlindungi dari gangguan luar seperti terhadap kelembaban debu dan kontaminasi zat lainnya. Kemasan IC dibuat dari bahan ceramic dan plastic, serta didesain untuk mudah dalam pemasangan dan penyambungannya. IC dapat bekerja dengan diberikan catuan tegangan 5 – 12 volt sesuai dengan tipe IC nya. Jika diberikan masukan tegangan lebih dari batas yang telah ditentukan maka IC tersebut dapat dikatakan rusak, untuk lebih jelasnya akan dijelaskan pada kelebihan dan kelemahan dari IC sendiri. Adapun kita sebagai pengguna IC harus dapat mempelajari beberapa hal berikut ini, yaitu :
IC yang paling banyak digunakan secara luas saat ini adalah IC digital yang dipergunakan untuk peralatan komputer, kalkulator dan system kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner Logic (bilangan dasar 2) yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off). Jenis IC digital terdapat 2(dua) jenis yaitu TTL dan CMOS. Namun dalam laporan ini hanya akan membahas tentang IC jenis TTL. Jenis IC-TTL dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya dipergunakan untuk berbagai variasi Logic, sehingga dinamakan Transistor.
![]() |
Resistor dan Potensiometer
Resistor dan Potensiometer

Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam suatu rangkaian. Kemampuan resistor dalam menghambat arus listrik sangat beragam disesuaikan dengan nilai resistansi resistor tersebut. Resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol Ω (Omega).

gambar : resistor
Bentuk resistor yang umum adalah seperti tabung dengan dua kaki di kiri dan kanan. Pada badannya terdapat lingkaran membentuk cincin kode warna untuk mengetahui besar resistansi tanpa mengukur besarnya dengan Ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel dibawah.
gambar : simbol resistor

Bentuk resistor yang umum adalah seperti tabung dengan dua kaki di kiri dan kanan. Pada badannya terdapat lingkaran membentuk cincin kode warna untuk mengetahui besar resistansi tanpa mengukur besarnya dengan Ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel dibawah.
Didalam rangkaian elektronika resistor dilambangkan dengan angka " R "Ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metal Film. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer dan Trimpot. Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR ( Light Dependent Resistor ) dan Resistor yang yang nilai resistansinya berubah tergantung dari suhu disekitarnya namanya NTC ( Negative Thermal Resistance .
Kode Warna
Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi ( tahanan ) dari resistor. Kode-kode warna itu melambangkan angka ke-1, angka ke-2, angka perkalian dengan 10 ( multiflier ), nilai toleransi kesalahan, dan nilai qualitas dari resistor. Kode warna itu antara lain Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Ungu, Abu-abu, Putih, Emas dan Perak. Warna hitam untuk angka 0, coklat untuk angka 1, merah untuk angka 2, orange untuk angka 3, kuning untuk angka 4, hijau untuk angka 5, biru untuk angka 6, ungu untuk angka 7, abu-abu untuk angka 8, dan putih untuk angka 9. Sedangkan warna emas dan perak biasanya untuk menunjukan nilai toleransi yaitu emas nilai toleransinya 10 %, sedangkan perak nilai toleransinya 5 %.
Cara cepat Menghafal kode warna adalah :
Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Violet, Abu-abu, Perak, Putih = Hi-Co-M-O-K-Hi-Bi-Vi-A-Pe-P
Potensiometer
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Potensiometer | |
---|---|
![]() Potensiometer satu putaran yang umum | |
Simbol | ![]() ![]() |
Tipe | Komponen pasif |
Kategori | Komponen resistif |
Potensiometer yang digunakan sebagai pengendali volume kadang-kadang dilengkapi dengan sakelar yang terintegrasi, sehingga potensiometer membuka sakelar saat penyapu berada pada posisi terendah.
Konstruksi potensiometer
Sebuah potensiometer biasanya dibuat dari sebuah unsur resistif semi-lingkar dengan sambungan geser (penyapu). Unsur resistif, dengan terminal pada salah satu ataupun kedua ujungnya, berbentuk datar atau menyudut, dan biasanya dibuat dari grafit, walaupun begitu bahan lain mungkin juga digunakan sebagai gantinya. Penyapu disambungkan ke terminal lain. Pada potensiometer panel, terminal penyapu biasanya terletak ditengah-tengah kedua terminal unsur resistif. Untuk potensiometer putaran tunggal, penyapu biasanya bergerak kurang dari satu putaran penuh sepanjang kontak. Potensiometer "putaran ganda" juga ada, elemen resistifnya mungkin berupa pilinan dan penyapu mungkin bergerak 10, 20, atau lebih banyak putaran untuk menyelesaikan siklus. Walaupun begitu, potensiometer putaran ganda murah biasanya dibuat dari unsur resistif konvensional yang sama dengan resistor putaran tunggal, sedangkan penyapu digerakkan melalui gir cacing. Disamping grafit, bahan yang digunakan untuk membuat unsur resistif adalah kawat resistansi, plastik partikel karbon dan campuran keramik-logam yang disebut cermet. Pada potensiometer geser linier, sebuah kendali geser digunakan sebagai ganti kendali putar. Unsur resistifnya adalah sebuah jalur persegi, bukan jalur semi-lingkar seperti pada potensiometer putar. Potensiometer jenis ini sering digunakan pada peranti penyetel grafik, seperti ekualizer grafik. Karena terdapat bukaan yang cukup besar untuk penyapu dan kenob, potensiometer ini memiliki reliabilitas yang lebih rendah jika digunakan pada lingkungan yang buruk.Potensiometer tersedia dengan relasi linier ataupun logaritmik antara posisi penyapu dan resistansi yang dihasilkan (hukum potensiometer atau "taper").
Pembuat potensiometer jalur konduktif menggunakan pasta resistor polimer konduktif yang mengandung resin dan polimer, pelarut, pelumas dan karbon. Jalur dibuat dengan melakukan cetak permukaan papua pada substrat fenolik dan memanggangnya pada oven. Proses pemanggangan menghilangkan seluruh pelarut dan memungkinkan pasta untuk menjadi polimer padat. Proses ini menghasilkan jalur tahan lama dengan resistansi yang stabil sepanjang operasi.
Potensiometer linier
Potensiometer linier mempunyap unsur resistif dengan penampang konstan, menghasilkan peranti dengan resistansi antara penyapu dengan salah satu terminal proporsional dengan jarak antara keduanya.. Potensiometer linier digunakan jika relasi proporsional diinginkan antara putaran sumbu dengan rasio pembagian dari potensiometer, misalnya pengendali yang digunakan untuk menyetel titik pusat layar osiloskop.Potensiometer logaritmik
Potensiometer logaritmik mempunyai unsur resistif yang semakin menyempit atau dibuat dari bahan yang memiliki resistivitas bervariasi. Ini memberikan peranti yang resistansinya merupakan fungsi logaritmik terhadap sudut poros potensiometer.Sebagian besar potensiometer log (terutama yang murah) sebenarnya tidak benar-benar logaritmik, tetapi menggunakan dua jalur resistif linier untuk meniru hukum logaritma. [2] Potensiometer log juga dapat dibuat dengan menggunakan potensiometer linier dan resistor eksternal. Potensiometer yang benar-benar logaritmik relatif sangat mahal.
Potensiometer logaritmik sering digunakan pada peranti audio, terutama sebagai pengendali volume.
Dioda
Dioda | |
---|---|
![]() Foto dari dioda semikonduktor | |
Simbol | ![]() ![]() |
Tipe | Komponen aktif |
Kategori | Semikonduktor (dioda kristal) Tabung hampa (dioda termionik) |
Penemu | Frederick Guthrie (1873) (dioda termionik) Karl Ferdinand Braun (1874) (dioda kristal) |
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Awal mula dari dioda adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini dioda yang paling umum dibuat dari bahan semikonduktor seperti silikon atau germanium.
Sejarah
Walaupun dioda kristal (semikonduktor) dipopulerkan sebelum dioda termionik, dioda termionik dan dioda kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari dioda termionik ditemukan oleh Frederick Guthrie pada tahun 1873[1] Sedangkan prinsip kerja dioda kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun[2].Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah dioda yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur".
Prinsip kerja
Prinsip kerja dioda termionik ditemukan kembali oleh Thomas Edison pada 13 Februari 1880 dan dia diberi hak paten pada tahun 1883 (U.S. Patent 307031), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899[3]. Penemuan Braun dikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.Penerima radio
Penerima radio pertama yang menggunakan dioda kristal dibuat oleh Greenleaf Whittier Pickard. Dioda termionik pertama dipatenkan di Inggris oleh John Ambrose Fleming (penasihat ilmiah untuk Perusahaan Marconi dan bekas karyawan Edison[4]) pada 16 November 1904 (diikuti oleh U.S. Patent 803684 pada November 1905). Pickard mendapatkan paten untuk detektor kristal silikon pada 20 November 1906 (U.S. Patent 836531).Dioda termionik
Dalam dioda katup termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda (Beberapa dioda menggunakan pemanasan langsung, dimana filamen wolfram berlaku sebagai pemanas sekaligus juga sebagai katoda), elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida, yang merupakan oksida dari logam alkali tanah. Substansi tersebut dipilih karena memiliki fungsi kerja yang kecil. Bahang yang dihasilkan menimbulkan pancaran termionik elektron ke ruang hampa. Dalam operasi maju, elektroda logam disebelah yang disebut anoda diberi muatan positif jadi secara elektrostatik menarik elektron yang terpancar.
Walaupun begitu, elektron tidak dapat dipancarkan dengan mudah dari permukaan anoda yang tidak terpanasi ketika polaritas tegangan dibalik. Karenanya, aliran listrik terbalik apapun yang dihasilkan dapat diabaikan.
Dalam sebagian besar abad ke-20, dioda katup termionik digunakan dalam penggunaan isyarat analog, dan sebagai penyearah pada pemacu daya. Saat ini, dioda katup hanya digunakan pada penggunaan khusus seperti penguat gitar listrik, penguat audio kualitas tinggi serta peralatan tegangan dan daya tinggi.
Dioda semikonduktor
Sebagian besar dioda saat ini berdasarkan pada teknologi pertemuan p-n semikonduktor. Pada dioda p-n, arus mengalir dari sisi tipe-p (anoda) menuju sisi tipe-n (katoda), tetapi tidak mengalir dalam arah sebaliknya.Tipe lain dari dioda semikonduktor adalah dioda Schottky yang dibentuk dari pertemuan antara logam dan semikonduktor (sawar Schottky) sebagai ganti pertemuan p-n konvensional.
Karakteristik arus–tegangan
Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n diantara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator.Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk didalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.
Jenis-jenis dioda semikonduktor
![]() | ![]() |
Dioda | Dioda zener |
![]() | ![]() |
LED | Dioda foto |
![]() | ![]() |
Dioda terobosan | Dioda varaktor |
![]() | ![]() |
Dioda Schottky | SCR |
Simbol berbagai jenis dioda
Dioda biasa
Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum pengembangan dioda penyearah silikon modern, digunakan kuprous oksida (kuprox)dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahang yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari dioda silikon untuk rating arus yang sama.Dioda bandangan
Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan. Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara dioda bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, dioda bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.[sunting] Dioda Cat's whisker
Ini adalah salah satu jenis dioda kontak titik. Dioda cat's whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong batu bara[5]. Kawatnya membentuk anoda dan kristalnya membentuk katoda. Dioda Cat's whisker juga disebut dioda kristal dan digunakan pada penerima radio kristal.Dioda arus tetap
Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.Esaki atau dioda terobosan
Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.Dioda Gunn
Dioda ini mirip dengan dioda terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.Penggunaan
Demodulasi radio
Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.Pengubahan daya
Penyearah dibuat dari dioda, dimana dioda digunakan untuk mengubah arus bolak-balik menjadi arus searah. Contoh yang paling banyak ditemui adalah pada rangkaian adaptor. Pada adaptor, dioda digunakan untuk menyearahkan arus bolak-balik menjadi arus searah. Sedangkan contoh yang lain adalah alternator otomotif, dimana dioda mengubah AC menjadi DC dan memberikan performansi yang lebih baik dari cincin komutator dari dinamo DC.
Langganan:
Postingan (Atom)